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ABSTRACT

Qortler vortices are thought to be the cause of transition in many fluid flows of practical
importance. In this paper a review of the different stages of vortex growth is given. In the
linear regime nonparallel effects completely govern this growth and parallel flow theories do
not capture the essential features of the development of the vortices. A detailed comparison
between the parallel and nonparallel theories is given and it is shown that at small vortex
wavelengths the parallel flow theories have some validity; otherwise nonparallel effects are
dominant. New results for the receptivity problem for Gértler vortices are given; in particular
vortices induced by free-stream perturbations impinging on the leading edge of the wall are
considered. It is found that the most dangerous mode of this type can be isolated and it's
neutral curve is determined. This curve agrees very closely with the available experimental
data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again
it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant.
Some new results for nonlinear vortices of O(1) wavelengths are given and compared to
experimental observations. The agreement between theory and experiment is shown to be
excellent up to the point where unsteady effects become important. For small wavelength
vortices the nonlinear regime is of particular interest since there a strongly nonlinear theory
can be developed. Here the vortices can be large enough to drive the mean state which
then adjusts itself to make all modes neutral. The breakdown of this nonlinear state into a

three-dimensional time dependent flow is also discussed.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton,VA 23665.






1 Introduction

It is now some fifty years since H. Gortler published his 1940 paper on the centrifugal
instability of a boundary layer on a concave wall. The mechanism discussed by Gortler
is essentially the same as that investigated some twenty years carlier by G.I. Taylor, who
was concerned with the instabilty of flows between concentric cylinders. In order to be
consistent with standard practice we refer to the vortex instabilities discussed by these
authors as Gortler and Taylor vortices respectively. However, there should be no misun-
derstanding about the relationship between the instabilities; they are caused by precisely
the same centrifugal mechanism but, since the basic state in which Gortler vortices develop
is spatially varying, it turns out that both the linear and nonlinear developments of the
two types of vortices are quite distinct.

Whilst considerable effort has been made to understand the different stages in the
development of Taylor vortices there has, in comparison, been little work done on Gortler
vortices. In fact the Gortler mechanism is of significantly greater relevance to practical
flow situations than is the Taylor mechanism. Thus in flows as diverse as those over turbine
blades and in the human aorta, the curvature of the flow streamlines is sufficient to induce
Gortler vortices. Another situation where Gortler vortices are thought to be the cause of
transition to turbulence is the acrodynamic one. Thus the flow over the concave section of
a Laminar Flow Wing or that in a jet engine inlet can support the mechanism. In Figure
1.1 we reproduce a picture of Gortler vortices in the concave section of a Laminar Flow
Wing developed at NASA Langley; the picture was kindly supplied to the author by Dr.

S. Mangalam. The vortices shown in the picture have been made visible by sublimating



chemicals and occur in the concave section of the wing. Furthermore, recent research on
the later stages of transition in flat plate boundary layers has shown that interacting wave
systems can play the role of streamline curvature and induce what are essentially Gortler
vortex structures,see Hall and Smith(1988,1989a,b). Apart from the situations discussed
above where Gortler vortices are known to be important there are other, less obvious,
situations where they occur. Thus for example in the 1980 blast at Mount St. Helens
longtitudinal vortices sct up in the flowing lava generated erosional furrows, Kieffer and
Sturtevant(1988).

In the Taylor vortex problem remarkable progress has been made towards an under-
standing of the sequence of bifurcations which takes place when the speed of the inner
cylinder is increased. There are two obvious reasons why little progress has been made
in comparison with the Gortler problem. Firstly, the spatial development of the bound-
ary layer in which the vortices grow means that a self-consistent asymptotic description
of even the linear stages of the vortex development is difficult to obtain. Secondly, it is
much easier to do careful experiments on the Taylor problem so that the theory has been
to a great extent driven by the experiments. In comparison a Gortler vortex experiment
is much more difficult to perform because of the inherent difficulties associated with flow
quality control in an open system.

In fact the apparent similarities between Gortler and Taylor vortices are quite mis-
leading, indeed little understanding of the growth of Gortler vortices can be obtained by
studying the Taylor problem. Where appropriate in the remainder of this paper we shall

highlight the major structural differences between the two vortex modes. Almost all of our



discussion will concern two-dimensional boundary layer flows but a restricted discussion
of weakly three-dimensional boundary layer flows will be included. In the latter situation
there is the possibility of yet another stationary vortex mode; we refer here to the so-called
crossflow vortex instability whose structure was elucidated so clearly by Gregory, Stuart
and Walker (1955). This mode is a Rayleigh instability of an effective velocity profile
which has an inflection point at the critical layer and is thought to be the most likely
cause of transition in flows over swept wings. In fact there is yet another stationary vortex
instability possible in a three-dimensional boundary layer and this was described by Hall
(1986). This disturbance is a Tollmien-Schlichting wave with an effective velocity profile
having zero shear stress at the wall. We shall see later that the Gortler mechanism is de-
stroyed by an asymptotically small spanwise mean flow so it appears likely that stationary
vortex structures in three-dimensional boundary layers are associated with either Rayleigh
or Tollmien-Schlichting waves.

At this stage it is appropriate for us to discuss the many experimental investiga-
tions of Gortler vortices that followed Gortlers original theoretical work. Perhaps the
first researchers to observe Gortler vortices were Gregory and Walker (1956) who used
the china-clay technique to visualize the vortices induced by protruberances in bound-
ary layers. Earlier, Lieppmann(1943,1945) had investigated the instability of boundary
layers on curved walls and concluded that transition can be caused by Gortler vortices.
Subsequently Aihara(1962) used dye to demonstrate the existence of vortices whilst Tani
and Sakagami(1962) used smoke to visualize the disturbances. Wortmann (1964a,b) car-

ried out more detailed flow visualization studies of Gortler vortices using the tellurium



method. Wortmann was able to show that in certain circumstances leaning vortices could
be induced. The most detailed early observations of Gortler vortices were reported by
Bippes(1972) and Bippes and Gortler(1972) who used the hydrogen bubble method to
visualize vortices in water tunnels. These authors were also able to measure the eigenfunc-
tions associated with the vortices since their experiments were performed on a relatively
sharply curved wall.

More recently there have been several experiments designed to determine whether the
Gortler mechanism is significant on the curved part of modern laminar flow wings , see for
example Pfenninger et al (1980),Harvey and Pride (1982), Allison and Dagenhart(1987). In
particular much work has been done at NASA Langley on a wing with a significant region
of concave curvature on the underside of the wing just beyond the leading edge . In Figure
1.1 the longtitudinal vortices in the concave region are clearly seen. Figure 1.2 shows a
sketch of the flow pattern associated with the vortex flow. The Langley experiments were
performed using sublimating chemicals to visualize the vortices and laser velocimetry to
measure the disturbance velocity field. For more details of the NASA Langley experiments
on Gortler vortices in boundary layers on laminar airfoils the reader is referred to Mangalam
et al (1985,1987).

A question of some importance is that of how the upstream conditions in a Gortler
vortex experiment influence the nature of the induced vortex system. This matter was ad-
dressed in the paper by Swearingen and Blackwelder(1983) who performed Gortler vortex
experiments in a lowspeed wind tunnel with the aim of finding the mechanism which fixes

the vortex wavelength. Earlier, Tani(1962) and Tani and Sakagami(1962) , along with



Bippes (1972) , had concluded from their experiments that the induced vortex wavenum-
ber is independent of the free-stream speed, the spanwise dimension of the test section ,
and the streamwise location of the onset of vortex actrivity. Bippes found that the vor-
tex wavenumber was however dependent on the nature of the incoming disturbance field.
Swearingen and Blackwelder found that the observed wavelength of the vortices in their
experiments could be altered by the introduction of strips of tape at the wall or by placing
cylinders in the incoming flow. Bippes & Swearingen and Blackwelder attempted to find
a mechanism which would cause the most amplified linear mode predicted by parallel flow
theory to be observed. This they achieved by suitably positioning the screens ahead of the
test section in their experiments. In fact there is no such thing as the most amplified linear
mode since we shall see in the next section that nonparallel effects make the concept of
a unique growth rate not tenable for the Gortler problem; this should not be interpreted
as critism of the latter experiments. Indeed, in view of the results discussed in the next
section, we believe that the fact that these authors were able to induce a particular vortex
wavelength shows conclusively that it is the upstream conditions which crucially select the
wavelength and neutral position of the induced vortex. Moreover, Kottke(1986) , who was
interested in determining the effects of Gortler vortices on heat transfer , found that in
his experiment Gortler vortices could not even be obscrved unless a grid was placed in
front of his test section. We note in passing here that the effect on heat transfer of Gortler
vortices needs to be understood if efficient turbine blades are to be designed , see Finnis

and Brown(1986).



The experimental papers discussed above were primarily concerned with demonstrat-
ing that Gortler vortices predicted by linear stability theory can be set up experimentally
On the basis of what is known about Taylor vortices one might expect that nonlinear
effects will inhibit the growth predicted by linear theory and lead to finite amplitude equi-
libration. This was confirmed by the above experiments since it was found that after the
onset of instability the vortex activity increased slowly in the streamwise direction. The
absence of any kind of threshold amplitude response by a boundary layer to longtitudinal
vortices also suggests that nonlinear effects are indeed stabilizing in the Gortler problem.
However in the Taylor problem it is well-known that, when the Taylor number is
increased sufficiently, the finite amplitude axisymmetric vortex sysytem set up when the
linear critical Taylor number is exceeded becomes unstable to a time-dependent three
dimensional mode often referred to as a wavy vortex mode. After the onset of this insta-
bility the vortex boundaries have a wave superimposed on them and this wave travels in
the azimuthal direction. In fact this secondary instabilty is merely a non-axisymmetric
Taylor vortex destabilized by the initial finite amplitude state. A convincing theoretical
description of the breakdown process leading to the wavy vortex state was given by Davey
, DiPrima and Stuart(1969). Thus it would be surprising if such a process was not op-
erational in the Gortler problem when the vortices develop downstream. We note that
moving downstream in the Gortler problem roughly corresponds to increasing the Taylor
number in the concentric cylinder problem.
At this stage it should be remembered out that Tollmien-Schlichting waves are another

possible source of instability in a boundary layer whereas in Couette flow only centrifugal



modes are possible. It appears from the available experiments that the breakdown route for
Gortler vortices is fixed by the size of the wall curvature . Not surprisingly for relatively
large wall curvatures the Reynolds number is not large enough for Tollmien-Schlichting
waves to be unstable and the wavy vortex mode is operational; see Bippes(1972), Ai-
hara(1961) and Peerhossaini and Wesfreid(1988). In fact the wavy mode is apparently
the cause of breakdown for the laminar flow wing case, Kohama(1987). Furthermore Ko-
hama and Peerhossaini & Wesfreid identified two possible types of wavy vortex mode. The
two modes respectively lead to oscillations of the cell boundaries at the top and botom
of the region of vortex activity. The characteristic frequency of the oscilation of the top
boundary was found to be greatest but still not as large as a typical Tollmien-Schlichting
frequency. We shall give a theoretical explanation for the existence of these distinct modes
when we discuss theoretical work on nonlinear effects. At smaller values of the wall curva-
ture Tollmien-Schlichting waves are involved in the secondary instability of the stationary
vortex and the transition process has many similarities with flat plate transition. Some
aspects of this interaction problem are now understood and a brief description of that work
will be given in the conclusion to this paper.

Consider then the instability of the boundary layer flow

w=u, = Uo(T(z,y), Re™ 75(z,y),0), (1.1)

to a spanwise periodic perturbation of wavelength comparable with the boundary layer
thickness. Here z and y represent nondimensional distance along and normal to a wall
of variable curvature %X(m) and z,y have been scaled on L and Re” +L where L is a
typical steamwise length and Re is the Reynolds number based on the length L and the
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free stream speed Up. We restrict our attention to walls of small curvature so the % << 1

more precisely we note that the Gortler instability occurs first for —ﬁ— ~ O(Re™7) and

therefore consider the limit Re — oo with

L]

L
G =2Re? — .
er - (1.2)

held fixed. The Gortler number G defined by (1.2) is, apart from a constant factor,
the square of the Gortler number used by Gortler. The relative scales for the velocity
components of a Gortler vortex follow from the discussion given by Davey (1962) for

narrow gap Taylor vortices so we therefore perturb (1.1) by writing
u=uy + UolU(z,y), Re™ 5V (z,y), Re” ¥ W (z,y)]expiaz. (1.3)

Here a is the vortex wavenumber and the spanwise variable z has been scaled on the
boundary layer thickness. Thus the normal and spanwise velocity components of the

L

vortex are of size Re™ 7 smaller than the downstream component. We have assumed above
that the perturbation is steady; such an assumption is valid only for the initial linear stages
of the vortex development and is consistent with experimental observations. Recent work
by Park and Huerre (1988) on a model problem of some possible relevance to the Gortler
problem suggests that the Gortler mechanism is a convective one rather than an absolute

instability so that (1.3) is the appropriate form for the vortex in the linear regime. The

perturbation is assumed small enough for lincarization to be a valid procedure so that



substitution of (1.3) into the Navier-Stokes equations yields:

{wd, +v0,}U + Ut, + Vi, = VU
{78, +59,}V + UT, + VT, + GuV = =P, + VV,

(1.4a,b.c)
(w0, +0,}W = —iaP + VW,

U, +V, +iaW =0,

where V = 83 — a2, Here P is the pressure perturbation associated with the vortex and
a crucial feature of this pressure is that it is absent from the z momentum equation so
that (1.4) is parabolic in z. However the main feature of (1.4) is that the perturbation
is controlled by partial differential equations in = and y; there is no obvious reason why
solutions of (1.4) obtained by replacing z-derivatives acting on perturbation quantities by
a constant will have any connection with solutions of the original system. It is the latter
assumption which was made by Gortler (1940) and many subscquent authors. It should
be remembered that at the time Gortler was performing his calculations it would not
have been possible to numerically integrate the partial differential equations. Indeed even
the reduced ordinary differential system solved by Gortler was a significant calculation
fifty years ago and Gortler obtained approximate solutions by a using a Green function
technique to reduce the stabilty equations to an integral equation, furthermore Gortler
approximated the basic flow by a piecewise linear profile. Later it was found that Gortler
had made an error in his calculations and this was corrected by Hammerlin (1955).

We refer to any solution of the linear or nonlinear perturbation equations for Gortler
vortices which replaces an z-derivative of a perturbation quantitiy by a constant as a

parallel flow solution; otherwise we refer to it as a nonparallel solution. This terminology



is not ideal because it might be argued that a solution of (1.4) which replaces z-derivatives
acting on U,V and W by constants but retains the terms dependent on T does capture
some nonparallel properties of the disturbance. However, since such solutions are clearly
not valid, and there are many such approximations, it seems pointless to try and attribute
them with some validity by describing them in some way which reflects their degree of
‘nonparallelism’.

The disturbance equations (1.4) have been known for some time; perhaps the first
derivation of these equations is due to Smith (1955) though the equations are to be found
also in Gregory, Stuart and Walker (1955). It appears that Floryan and Saric (1979) were
the first to state the equations in the form (1.4) without the retention of formally smaller
terms. Even though the correct form for the perturbation equations has been known for
some time, it is only in the last decade that solutions of (1.4) which correctly take care of
the streamwise structure have been found. In the next section we will describe the results
obtained by Gortler (1940) and subsequent authors who solved the disturbance equations
without taking care of the z dependence of the disturbance velocity field in a self-consistent
manner.

In Section 3 we derive nonparallel solutions of the disturbance equations for a >> 1
and discuss numerical solutions of the full system. The numerical solutions of the full
system do not lead to a unique neutral curve because of the influence of initial conditions.
Thus it is somewhat ironic that the forty year long search for the neutral curve for Gortler
vortices was necessarily doomed to fail because the concept of a unique neutral curve is

not tenable for the Gortler problem. However we note that the different neutral curves
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predicted by the parallel flow curves disagree because of the inconsistent retention of some
nonparallel effects and higher order curvature effects whereas the nonuniqueness associated
with the full system is associated with its parabolic nature. In that section we also present
some results of what is apparently the first investigation of the receptivity problem for
Gortler vortices. Here we find that in, some sense, a unique neutral curve for Gortler
voritices can be found for a quite general class of incoming disturbances.

In Section 4 we shall discuss nonlinear aspects of the Gortler problem. Itis at this stage
that a major difference between the Gortler instability and other instabilities develop. In
particular we find that, for small vortex wavelengths, perhaps uniquely in fluid dynamics,
the onset of nonlinear effects close to the position of neutral stability is not governed by
a Stuart-Watson amplitude expansion. It turns out that when Gortler vortices become
nonlinear there is a mean field interaction between the fundamental mode and the mean
flow correction; there is not a cascade of energy into the higher harmonics. Thus the onset
of nonlinear effects in the Gortler problem leads to a pair of coupled nonlinear partial
differential equations rather than an an ordinary differential equation for the disturbance
amplitude. These evolution equations are valid sufficiently close to the position where
instability first occurs; however, they point to the existence of a remarkably simple fully
nonlinear state further downstream. This fully nonlinear state has close connections with
the so-called marginal theory of turbulence proposed in a different context by Malkus
(1956). In particular the mean (independent of z) part of the flow in the nonlinear state
turns out to satisfy an equation which enables the fundamental and all higher harmonics

of the vortex to remain neutrally stable. Thus, where vortices exist, the mean state no
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longer satisfies the boundary layer equations. It turns out that the vortices decay to zero
in shear layers away from the centre of vortex activity and beyond these shear layers the
mean state satisfies the boundary layer equations. Even further downstream it is possible
to describe the three-dimensional time dependent breakdown of these vortices as a wavy
vortex mode becomes unstable in either of the shear layers. It is somewhat surprising that
the Gortler problem can be described asymptotically in a strongly nonlinear regime way
beyond what is possible for apparently much simpler instabilities such as Taylor vortices
or Bénard convection.

Finally in Section 5 we shall draw some conclusions and briefly discuss some recent

results on vortex-wave interaction theory.

2. Parallel flow theories of Gortler vortex growth.

In 1923 G.I. Taylor had shown conclusively that centrifugal instabilities between ro-
tating concentric cylinders could be accurately described in the linear regime by a stability
theory which took viscous effects into account. On the basis of inviscid theory it was known
from Rayleigh (1916) that flows with curved streamlines are locally inviscidly unstable if
the circulation decreases in a direction away from the local centre of curvature. The latter
result suggests that a Blasius boundary layer is centrifugally unstable if the wall is concave
and stable otherwise. Other boundary layer flows such as the wall jet can be unstable on
both convex and concave walls. The instability, when it occurs, takes the form of counter-
rotating streamwise vortices known as Taylor or Gortler vortices depending on whether or

not the basic state is fully developed.
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In 1940 Gortler formulated the linear stability problem for a two-dimensional bound-
ary layer on a curved wall. He ignored the spatial development of the boundary layer and
the normal velocity component associated with that flow. If Ug is the free-stream speed,
v the viscosity of the fluid, 6 the boundary layer thickness and A the radius of curvature,

then following Gortler we define a Gortler number by

— @(i)i— (2.1)

G
’ v A

which, apart from a constant, is the square root of the Gortler number defined by (1.2).

The approximations made by Gortler therefore led him to consider the eigenvalue problem

d? du
{ aE—U}U:GgVEI-L- :

dy? y
d? d?
{d—?j—z—-—a?—d}{@f—a?}v: —2GEG9ﬂU

subject to U =V =V,

y = 0,y = 0. Here ay and o are the spanwise wavenumbers and

temporal growth rate of the vortex whilst @(y) is the local approximation to the streamwise
boundary layer velocity. Gortler obtained a solution by using Greens functions to transform
the eigenvalue problem into an integral equation which he then solved numerically. Later
Meksyn(1950) used a WKB approximation procedure to solve Gortlers equations and the
neutral curves found by Mecksyn and Gortler were similar to those for Taylor vortices and
Benard convection. Their results suggested that, on the assumption that boundary layer
growth is not important, instabilty occurs first at a finite value of the vortex wavenumber
at some critical Gortler number. Subsequently it was found that there was an error in
Gortler’s calculations which was corrected by Hammerlin (1955) who resoved Gortler’s

equations. The neutral curves, ¢ = 0, obtained by Gortler (1940) and Himmerlin (1955)
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are shown in Figure 2.1. We see that the correct solution of the simplified equations
predicts that instability occurs first at zero wavenumber, in which case the vortices extend
beyond the edge of the boundary layer. That result contradicts the assumption that the
vortices are confined to the boundary layer so it was argued by various authors that finite
curvature or nonparallel effects might be used to remedy this deficiency in the theory. Thus
there followed in the next twenty years a series of papers motivated primarily to correct
the zero wavenumber degeneracy of Gortler’s theory.

Perhaps the most significant of these calculations was the work of Smith (1955) who
devised a modified form for the eigenvalue problem and chose to look at spatial instability
rather than temporal instability. The equations derived by Smith took some account of
strecamline curvature and retained the terms associated with the nonzero normal velocity
component in the boundary layer. The equations solved by Smith produced a critical
Gortler number at a finite wavenumber. It was significant that Smith clearly recognized
that, if the non-neutral theory was to have any relevance for transition prediction, a spatial
stability calculation was required.

Meanwile Himmerlin (1956) attempted to remedy the deficiency at low wavenumbers
by retaining some formally negligible curvature effects. A related calculation was then
carried out by Witting (1958) who confirmed Hammerlin’s result that small curvature
effects can shift the critical wavenumber to a finite value. The neutral curves obtained by
these different approaches were consistent only at high wavenumbers; at low wavenumbers

the curves were in marked disagreement. Moreover, since no formal asymptotic justification
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could be made for the somewhat arbitrary retention of the apparently small higher order
effects, it was not clear which, if any, of these calculations was correct.

The above calculations can be classified as parallel flow calculations because they
did not account for every term in the disturbance equations arising from the non-parallel
nature of the basic state. Interestingly enough it is worth pointing out that a Stokes
layer on a curved surface is susceptible to Gortler vortices and Seminara and Hall (1975)
showed that for this parallel boundary layer there is a well defined neutral curve with a left
hand branch asymptoting to, rather than crossing, the zero wavenumber axis. That result
suggests that the essential difficulty present in the Gortler problem at small wavenumber
is a direct consequence of boundary layer growth. We shall see in the next section that
if boundary layer growth is taken care of in a self-consistent way the small wavenumber
degeneracy is resolved but its resolution causes philosophical problems for the transition
prediction fraternity.

A review of many of the early parallel flow theories was given by Herbert (1976).
Other aspects of the Gortler problem were investigated by, for example, Kahawita and
Meroney (1977), (effect of wall heating), Tobak (1964), (effect of curvature distribution).

More recently Floryan and Saric (1979) reformulated the Gortler problems using
streamline co-ordinates in order to overcome the problems associated with the zero wavenum-Jj
ber limit. Even though Floryan and Saric and other previous workers recognized that
partial derivatives of the disturbance in the streamwise direction are formally comparable
to the terms retained by Gortler, the solution procedure used by them replaced 58; by a

constant. Despite Floryan and Saric’s claim that this can be justified by the method of
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multiple scales, this approximation is not valid because the scales on which the vortex and
mean flow develop in the streamwise direction are identical. Thus the solution procedure
of Floryan and Saric was incorrect for exactly the same reasons as were previous parallel
flow calculations.

Thus in summary we conclude that the parallel flow approaches to the Gortler problem
gave inconsistent results at order unity wavenumbers and physically unacceptable results
at small wavenumbers. In Figure 2.1 we show a selection of the neutral curves found by
different authors. We note that the results appear to be consistent at high wavenumbers;
we shall see in the next section that it is an understanding of this regime which enables a

self-consistent asymptotic description of Gortler vortices to be carried out.

3. Nonparallel linear theory and the receptivity problem.

We shall now discuss how (1.4) can be solved in a manner which takes account of
nonparallel effects in a justifiable manner. At this stage we shall make the assumption
that the unperturbed state is a Blasius boundary layer. The ideas we discuss are easily
applied with some minor modifications to more general boundary layers but for definiteness
here we restrict our attention to the zero pressure gradient case. For a discussion of the
derivation and solution of the Gortler vortex equations for interactive boundary layers
see Hall and Bennett (1986) where, as an illustrative example, the instability of internal
boundary layers is discussed.

Next we suppose that we are interested in the spatial evolution of a constant wave-
length longitudinal vortex introduced into the flow at, say, ¢ = Z. Experimentally it is

well known that a vortex conserves its physical wavelength as it develops downstream
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3

so that the non-dimensional wavelength 2ma, > based on the local boundary layer thick-

L
32

ness decreases like z~ 5. The effective local Gortler number, G, for the flow grows like

3
F]

x(z)z 7, so that in a Blasius boundary layer a constant wavelength vortex develops such
that G, ~ a,%x(af). In convective and centrifugal instability theories it is known that
the right hand branch of the ncutral curve, if one exists, has G ~ a®. Tt follows that if
x{z) << ¢ for large z then the vortex must ultimately enters a stable regime. In par-
ticular it follows that a Blasius boundary layer over a wall of constant curvature a vortex
can and must be unstable for a finite range of values of z. Moreover, we note that in any
growing boundary layer the local wavenumber for a fixed wavclength vortex must grow like
the boundary layer thickness. Thercfore any initial longitudinal vortex ultimately enters
a regime where its effective nondimensional wavenumber is large. We now show how we
can exploit this largeness of the local vortex wavenumber to develop a formal asymptotic
expansion of (1.4) valid for a >> 1.

As one might expect, it is found that at large wavenumbers the vortex feels only
the local boundary layer structure and chooses to locate itsclf where it maximises its

downstream growth. Hall (1982a) investigated the solution of (1.4) in the limit a — oo

and expanded G in the form
_ 4 3 z
G = goa” + gza” + g2a® + - -- (3.1)

where {g;} are to be found in terms of z if the growth rate and a are specified. Alternatively,
if we are given {g¢;}, then the corresponding growth rate is to be found. A WKB analysis

of (1.4) shows that the most unstable longitudinal vortex structures are those which have
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a second order turning point behaviour in their vertical structure. This means that the
vortices are confined in a layer of depth a~ 5 centred on some location y=y* ().

In the neighbourhood of y* the basic flow and disturbance are expanded in powers of

- L
3

a” 7 so that for example U in (1.3) becomes
U= exp{aZ/ [Bo(z) + a~ 7 B1(z) + - - Jdz} Y a” TU,(z, €), (3.2)
i=0
where
§=aily—y). (3.3)

In (3.2) the functions {B;} determine the spatial growth of the vortex and, after a little

work, we find that for example [g satisfies

(3" Bo + 1)% = gou' @) x, (3.4)

(7" Bo + 1)?], = golzg, ]} x, (3.5)

and if go is given (3.4), (3.5) can be thought of as equations to determine By and y*. In
that sense (3.5) can be interpreted as the condition which enables the vortex to maximise
it’s spatial growth.

The neutral stability point in the boundary layer can be defined in terms of the zero
growth of a particular flow quantity measured at a particular location in the boundary
layer. Any such flow quantity has its neutral stability point approximated at zeroth order
by B8 = 0 so that (3.5) shows that, where a vortex is neutrally stable, it locates itself at the

position where it effectively ‘most violates’ Rayleighs criterion. The expansion procedure
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outlined above can be continued to higher order taking care of nonparallel effects in a
systematic manner. The vertical structure of the disturbance turns out to be described
by parabolic cylinder functions and the only possible breakdown of (3.2) occurs at a point
where x(z) changes sign. At such a point Bg is a double eigenvalue and merges into a
continuous spectrum, the difficulties associated with connecting (3.2) to an appropriate
structure for y < 0 have not been resolved, but see Jallade (1989) for some discussion of
that problem.

In the neutral case Hall (1982a) showed that for a Blasius boundary layer (3.1) becomes
Gy = 5.91z7a* + .96a® + gaa™ + - -+, (3.6)

where g2 depends on what flow property is used to monitor the growth of the disturbance.
This means that the first two terms in (3.6) are given correctly by the various parallel
flow theory approximations to (1.4). Thus in the high wavenumber limit the various
parallel flow theories become valid but, since this is their only range of validity and the
asymptotic approach is at lcast as accurate and requires no computing whatsoever, this
merely demonstrates the futility of solving the parallel flow equations.

For compressible boundary layers the approach of Hall (1982a) can again be used in
the high wavenumber limit and Hall and Malik (1989) have presented results similar to
those of the incompressible theory. Surprisingly it has been recently found that in the
hypersonic limit a Sutherland or Chapman Law fluid has a simplified Gortler structure.
Thus Hall and Fu (1989a,b) have shown that in the most dangerous wavenumber regime
nonparallel effects are unimportant at zeroth order and that the vortices are trapped in the
transition layer where the basic flow temperature field rapidly adjusts to its free stream
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value. The results of Hall and Fu were subsequently confirmed by Spall and Malik (1989)
who integrated numerically the full partial differential stability equations at finite but
large Mach numbers. Earlier work on the compressible Gértler vortex stability problem
by Kobayashi and Kohama (1977), El Hady and Verma (1981) had used a parallel flow
approximation at finite Mach numbers. Hence these calculations only have any validity in
the high wavenumber regime where they are consistent with the Hall and Malik theory.
Now let us turn to the 0(1) wavenumber regime and note that, if W and P are
eliminated from (1.4) we obtain the following coupled partial differential system for U and

V.
U.

vy — @, = ¢®U + 4,U + 9U, + Va,,
- 4 2 = - 2 2~
V{tayy +a*+ a3, } + 3,U,, + {fezy + a0, + xa®Gu}U
+ {2y, — wdy” + a®u}V, + 2{a,, + 7,0, }U,

+ Viyyy — Vyyy — {T-’u + 2a2}Vw + {ﬂzv + azﬁ}Vy =0,

which must be solved subject to the conditions

ov
U7 V7 = = 0’ y= 0700’ (38)
Oy

and, if the vortex is induced by an initial perturbation at z = 7

U=U(y), V=V(), z=az. (3.9)

The functions U,V and the position  where the disturbance is introduced are all at
our disposal constrained only by the conditions U”(0) = 0,0"(0) = azl',_/"(O),V””(O) =

2a2V"(0), which ensure that U and V do not have a singularity at (z,y) = (z,0) In order
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to monitor the growth or decay of the vortices Hall (1983) defined the local growth rate

o(z) by

1d 0
o= ——En{/ U2+ V24 W2)dy}. (3.10)
2 dIE 0

The position of neutral stability was defined by o = 0 and the local wavenumber calculated
at that location. If the initial wavenumber of the imposed disturbance is varied a neutral
curve appropriate to a particular initial disturbance can be found. Figure 3.1 shows the

dependence of o(z) on z for the case a = .069, G = .025 and U,V given by
U =ybev'/2, V=0 (3.11)

We observe that the position of neutral stability is indeed a function of T whilst for large
z the growth rates merge because the effective wavenumber is large and the asymptotic
theory of Hall (1982a) applies. In Figure 3.2 we show the neutral curves corresponding
to different initial conditions (3.11) imposed at Z = 50. Also shown in that Figure are
some experimental results due to Tani (1962) and Winoto and Crane (1980) together with
some parallel flow stability calculations. We sec that the nonparallel neutral curves are
closer to the experimental results. Figure 3.2 also shows the two-term large wavenumber
approximation to the neutral curve, it can be seen that the different approaches merge in
that limit. Thus in the only situation where parallel flow theories are valid the asymptotic
approachis at least as accurate and trivial to use. We conclude that the concept of a unique
neutral curve or growth rate is not tenable for the Gortler problem since the local behaviour
of the vortex depends on its upstream form. Whilst such a result is exactly what a theorist

would expect, given the parabolic nature of the stability equations, it causes a problem for
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design engineers who need a unique growth rate at each z to feed into their version of the
e™ method for transition prediction. The response to this difficulty has been to criticize
the form of the initial conditions chosen by Hall (1983) since the initial velocity field does
not look like a parallel flow theory Gortler vortex velocity field, see for example Kalburgi
et al (1987,1988), Spall and Malik(1989). It was argued by these authors that the ‘correct’
choice of the initial condition is made by solving the parallel flow stability equations. It
has never been clear to the author on what grounds this can be justified; however, it
does provide a use for the solutions of the parallel flow eigenfunctions. The criticisms
about the choice of initial conditions are unfounded; the point is, of course, that once it is
found that Gortler vortices are governed by parabolic partial differential equations, then
the downstream behaviour of a vortex is fixed by the upstream structure. Moreover, the
appropriate initial conditions are not fixed by the stability equations or a reduced form
of these equations. Interestingly it has been found by Swearingen and Blackwelder (1987)
that the disturbance velocity field calculated from the partial differential equations is very
close to that measured experimentally in the unstable regime.

Suppose next that rather than impose an initial disturbance at a finite value of r we
allow the vortex to be generated by a free stream longitudinal vortex structure impinging
on the leading edge of the curved wall. Thus we now address the receptivity problem for
Gortler vortices and assume that at the leading edge the z velocity component of the flow
is given by

U=1+Ae**U"(y), (3.12)
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where we have assumed a dependence of the impinging vortex structure on the boundary
layer lengthscale though later we shall see that the ‘most dangerous’ vortex has U* inde-
pendent of y. We shall now solve the vortex equations in the region x << 1 such that
(3.12) is satisfied; the initial forms for the y and z velocity components are then implied
by that calculation.

We assume that the initial disturbance is bounded at infinity so that it is suffiuciently
general for us to consider the case U*(y) = cos{by + ¢} where b and ¢ are constants so
that the disturbance at the leading edge is periodic in the y and z directions. In fact this
would be the appropriate form for an initial disturbance induced by a grid upstream of
the test section in an experiment. At the leading edge of the plate the wavelengths in the
spanwise and normal directions are large compared with z ¥, the scale of the boundary
layers there. Thus , as one would expect, it is necessary for us to discuss two regions there
, namely the boundary layer y ~ z7, and an outer layer with y ~ 0(1). We shall see that
in the boundary layer y ~ 25 with £ << 1 the flow responds in a quasiparallel manner to
the modulated free stream.

Suppose that we allow y//z — oo in the disturbance equations (3.7a,b); after some

manipulation we obtain

B
{02 - a® -0, - 8,}U =0,
”;a’ 5 25 (3.13a,b)
2 2 s 2 vy o 42 P _av
{av —a" =9, — \/é—lfav}{ay a }V = a"xGU + (23:)3/2va + (ZI)B/ZU'

Here J is the Blasius constant defined by
p= lim {nf' ~ f}.
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Since the incoming disturbance is periodic in the y direction with period 27 /b we seek
a solution of (3.13a) which maintains that structure. The particular solution of (3.13a)

which in the limit z — 0 is consistent with (3.11), (3.12) is
U=U, =e "+ coslby + ¢ — 0522} (3.14)

and the periodic solution of (3.13b) is then

~{b+a?}z ()2— 2 z
v, = eb_2+7 cos{by + ¢ — bﬂ\/2x}{(——— ES) —~ azG/ xdz}. (3.15)

In fact the V equation has an eigensolution V = Q(x)e™ ¥ for arbitrary Q(z) and we
shall sce that matching with the boundary layer solution cannot be achieved without this
eigensolution. Thus the boundary layer causes the periodic structure of V to occur only

for ay >> 1 and the appropriate solution of (3.13b) is therefore
V=Vp+ Q(z)e . (3.16)

If we are in the regime where z = 0(1) then ay >> 1 at the edge of the boundary layer
and so the (U, V) disturbance equations must be solved subject to

(b2 + a2, [ﬁ_Lb’\;ég £ 42G[*® xdz])

(U, V) - o (17 +a'}e cos{by + & — b,@\/Q_:c—} 02 1 a2

(3.17)

However near the leading cdge (3.14), (3.16) apply for y = 0(1) with z << 1 and Q(z)
must be found by matching with the boundary layer solution. Here U and V are most

. . . . . 1 . “ e .
casily obtained in the form of expansions in powers of z2 from the primitive equations
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(1.4) expressed in terms of z and 7 = A=. In fact U and V arc obtained by perturbing

the Blasius solution by letting the free stream speed very slightly from unity. We obtain

U=cosd{f +n/2f"}+--,

3.18)
cos¢ 1 9 (
V=""9xw% {=(nf = f)+n°/2f"}+---.
\/2—:1:{2("”‘. f) 7/f}

When 1 — oo in (3.18) we obtain

U-—>cosop+---,

(3.19)
V5 cosqﬁﬁ_l_

22z

Hence if (3.14), (3.16) are to match with the boundary layer solution for 7 >> 1 we must

choose

cos|p — bBV2z] , (b% — a?) ¢

b2 + a2 { V2z _GZG/ xde}
[ cos ¢
22z

This equations for @ is correct to order x~

Q+

o,

». In principle we can continue the above
procedure to any order in z7 and obtain the higher order terms in the expansion of @, for
our purposes here it is not necessary to pursue that calculation further.

The small z solutions for y ~ z;‘,y ~ 0(1) can then be used to form a composite
expansion to give asymptotic forms for U and V to begin the numerical solution of (1.4)
from some small but finite value of z = z2. We restrict our discussion to the case when
é = 0 which corresponds to the most physically relevant case when U* (0) # 0 (Note that
since U* = cosby cos ¢ — sin by sin ¢ and the problem for U,V is a linear one the only two
distinct cases are ¢ = 0,¢ = 7/2).

For the receptivity problem formulated above the disturbance energy is infinite since

it is not confined to the boundary layer, therefore we cannot monitor the growth of a

25



disturbance using the approach of Hall (1983). Since the normal and spanwise velocity
components are 0(Re~ ;‘) smaller than the streamwise component it is appropriate to define

a local growth rate in terms of U alone. Thus we use o, defined by
7 {nU(z,0))
g, = 7un z, ’
Oz

to monitor the growth of the disturbance. We note that if ¢, was used in the calculations
of Hall (1983) the results would be virtually identical.

Now let us discuss some results for the Gortler receptivity problem formulated above.
The disturbance equations were marched downstream from = = z2 using the code discussed
in Hall(1983). After some experimentation we found that a suitable step length in the
streamwise direction was 0.00001 if a normal step length of .0333 was used. All the
calculations reported on here correspond to these step lengths and 1000 points were used
in the vertical direction. The surprisingly small x-step length was necessary because of the
singular behaviour of V for small z.

In Figure 3.3 we show o, for the case ¥y = 1.,b = 0.,G = 70. and several different
values of the vortex wavenumber a. For small values of z the development of the vortex is
independent of it’s wavenumber and the growth rates are indistinguishable. As the vortex
develops dowstream the growth rates diverge and become positive at different downstream
locations. If the local Gortler number and wavenumber are calculated at the different
locations where the growth rate vanishes a neutral curve in the (¢, — G.) plane can be
calculated. Figure 3.4 shows the result of several such calculations for different values of
b. A crucial result illustrated by this calculation is that instability occurs first for the case
b = 0., so we conclude that the most dangerous incoming disturbance for the receptivity
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problem has U"* ~ cosaz at the leading edge of the wall. Our only explanation of why this
should be the case is to point out that , if the disturbance was evolving in anything like a
quasi-parallel manner , incoming disturbances with the higher values of b would stimulate
the more stable higher Gortler modes.

In Figure 3.5 we show two neutral curves corrsponding to b = 0 but with different wall
curvatures. This Figure demonstrates that the most dangerous mode is weakly dependent
on the wall curvature distribution, this result has implications for the question of how the
curvature should be distributed on an acrofoil in order to inhibit Gértler vortex growth.

In Figure 3.6 we have compared our results with the experimental observations of
Tani(1962), Bippes and Gortler(1972), Winoto and Crane(1980) ,and Swearingen and
Blackwelder (1987). The curves (a), (c) correspond to a typical neutral curve from
Hall(1983) and Floryan and Saric(1979) respectively. The curve (b) comes from the re-
ceptivity calculation with b=0.x = 1.; we stress that this is the most dangerous mode
predicted by the receptivity calculation. Apart from the one experimental point below this
curve we see that the receptivity calculation is the most consistent with the experiments.

The development of the disturbance velocity components as the vortex develops down-
stream is shown in Figures 3.7a,b. We note that the edge velocity for the streamwise
velocity component decreases monotonically with z whilst the normal velocity component
at the edge of the boundary layer initially decreases but then increases with z. The initial
decrease occurs because V' ~ r 5 for small enough z whilst for larger (but not too large)
z the term proportional to G causes V to grow. In fact at even larger z the edge velocity

begins to decrease with z because of the exponential factor in (3.17). It is interesting to

27



note that whilst the initial streamwise velocity component of the disturbance looks similar
to a parallel flow eigenfunction the normal velocity component does not. Indeed in the
initial stages of its development this component has sign opposite to that in the unstable

regime.

4. The nonlinear stages of Gortler vortex growth

It is in the nonlinear regime that significant differences between Gortler vortices and
other hydrodynamic instabilities occur. We recall that for most fluid flows the onset of
nonlinearity can be described by the Stuart-Watson method. This method shows that in
the nonlinear state energy cascades down from the fundamental into the higher harmonics
and the mean flow. At small disturbance amplitudes A it is found that A satisfies an
equation of the form

AP = Al 14, (4.1)

where p is a prescribed real constant, t a slow time variable and the + or — sign is to be
taken dependent on whether nonlinear effects are stabilizing or destabilizing. The constant
p is positive or negative dependent on whether the basic state is linearly unstable or stable.
In the Taylor vortex problem nonlinear effects are stabilizing so that (4.1) has the stable

finite amplitude equilibrium solution
|41 = 4. (4.2)

Thus in this situation the small but finite amplitude disturbance is determined by an in-

teraction involving the fundamental, mean flow correction and the first harmonic. The
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secondary instability of the Taylor vortex state (4.2) to wavy vortex instabilities was dis-
cussed in the paper by Davey, Di Prima and Stuart (1968). The wavy vortex mode arises
from the lincar instability of a steady axisymmetric vortex flow to a time-periodic non-
axisymmetric mode disturbance and can be described by a generalization of (4.1) to two
coupled amplitude equations. Experimentally it has been observed by, for example Aihara
and Kohama (1981), that Gortler vortices undergo a similar breakdown at finite amplitude.
The similarity between the Gortler and Taylor problems suggests that the procedure used
so successfully by Davey, Di Prima and Stuart (1968) should, subject to some nonparallel
modifications, be able to describe the breakdown of Gortler vortices.

The first nonlinear calculation of Gortler vortices known to the author is that due
to Aihara (1976). That calculation ignored nonparallel effects and attempted to simulate
nonlinear effects by an approximate averaging technique. The procedure has some similar-
ity with the Stuart-Watson method but no formal amplitude equation was derived. Aihara
claims that his analysis gives predictions consistent with his experimental results.

We have seen already that in the linear regime nonparallel effects cannot be ignored
at 0(1) vortex wavenumbers. This must also be the case when nonlinear effects are taken
into account and Hall (1988) integrated the nonlinear version of (1.4) for a variety of
different disturbance amplitudes. The method used was based on that of Hall (1983) but
with an iteration procedure to take care of the nonlinear terms. At sufficiently small
disturbance amplitudes the calculation reproduced the linear results of Hall (1983) whilst
at larger initial amplitudes finite amplitude states were calculated. In Figure 4.1 we show

some results from Hall (1988) for a wall with curvature distribution x ~ = with G =
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.0288,a = -1.The energy in the fundamental and the mean flow correction due to the vortex
is shown for different values of the vortex amplitude A. We note that the calculations were
for an initial disturbance such that A represents the maximum value of the streamwise
disturbance velocity component divided by the free stream speed. In any given calculation
it was found that, sufficiently far downstream, the only energy present in the disturbance
velocity field was associated with the fundamental or the mean flow correction. The total
downstream velocity component at different spanwise locations is shown in Figure 4.2
for A = .1 . Here we sce that, at the spanwise location where upwelling occurs, highly
inflectional velocity profiles are set up as the vortex develops in z. These profiles are locally
unstable to inviscid Rayleigh waves (see Horseman (1990)) so that in some experiental
situations we expect that the onset of time-dependence in the Gortler problem will occur
as an inviscid secondary instability of a finite amplitude stationary vortex.

The nonlinear calculations of Hall (1988) suggest that any initial spanwise vortex
distribution ultimately develops into a finite amplitude state in which the only energy
interchange is between the fundamental and the mean flow. We now describe strongly
nonlinear stability calculations, due to Hall and Lakin (1988), which explains the latter
type of interaction. Earlier Hall (1982b) had investigated the weakly nonlinear regime
corresponding to small wavelength Gortler vortices. It was found that, within an a~!
neighbourhood of the linear neutral location the initial development of the vortex is gov-

erned by the system

8% 1 o o
{7 -~ 2 _k—2z}U =V,
0¢% 4 Z;”_ o 865 (4.3a,b)
U U
— - — = —(V?).

062 8z o¢
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Here k is a a constant, a~ 1V cos az is the normal velocity component of the vortex whilst

a~ 17 is the mean flow correction. The variable Z is defined by

Z=a(z—zy)

where x5 is the neutral location and € 1s as defined by (3.3). The higher harmonics
generated are negligible in the interaction so that the initial nonlinear evolution of a vortex
of small wavelength certainly occurs as a mean field interaction. The positive or negative
sign in (4.3a) is to be taken dependent on whether the curvature of the wall increases
more or less quickly than z¥. On a concave wall of constant curvature the negative sign
1s appropriate and then (4.3) describes the finite amplitude decay of a vortex.

In Figure 4.3 we show some numerical solutions of (4.3) subject to the conditions

V-0, a0 [{—> oo,

so that the effect of the vortex is confined to the § = 0(1) layer. Figure 4.3 suggests that
for large Z the functions @,V develop an asymptotic structure with V trapped in a layer
of depth z7 whilst @ decays to zero over a lengthscale O(i:‘) In this large Z region V
and @ are respectively symmetric and axisymmetric about & = 0. Hall(1982h) shows that
the vortex activity decays to zero as the solution of a nonlinear Airy equation in layers
of depth z# situated symmetrically at distance 0(3‘;;‘) away from £ = 0. The mean flow
correction in these layers does not develop a structure and is therefore reduced to zero in
a thicker layer of depth z 5.

A result of some significance is that for large z the mean flow correction is of size
5

T3 and since & was initially scaled with @~ 7 it follows that when 7 = 0(a), i.e. when
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z =z, = 0(1), the mean flow correction will be comparable with the original basic state.
In nonlinear stability problems governed by the Stuart-Watson method a related stage is
encountered but all the harmonics of the fundamental then become equally important so
that no asymptotic description of this strongly nonlinear regime is available. In the Gortler
problem this is not the casc and surprisingly it was shown by Hall and Lakin (1988) that,
even in the strongly nonlinecar regime, where the basic state is totally restructured by the
vortex, an asymptotic description of the interaction is available. The structure found by
Hall and Lakin can be written down as the limiting form of the weakly nonlinear solution
of Hall (1982b) which produces an 0(1) correction to the linear flow. For conenience we
now let € denote a~ 1. The different regions found in that limit are illustrated in Figure 4.4.
In region I a finite amplitude vortex exists which is large cnough to generate a transfer of
energy into the mean state thereby determining that state. In the thin shear layers Ila,b the
vortex activity is reduced to zero again through the solution of a nonlinear Airy equation.
In regions IIla,b there is no vortex activity and the mecan flow satisfies the boundary layer
equations. However, the solutions of the boundary layer equations in IITa,b must satisfy
certain conditions at y1(z), y2(z), the unknown positions of the shear layers Ila,b.
In region I the total x and y velocity components expand as
w = G + a1 + - + [{¢BUE + 2EUL + -},
+ @E2UE+ -+ cc
(4.4a,b)
v= ot en ook ([ BV 4 EVE 4,
+ EPVG 4 -]+ ce

where E = exp(taz).
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The Gortler number expands as
G = Goa* + - (4.5)

If the above expansions are substituted into the Navier-Stokes equations and the dominant

terms are equated we obtain

9y (4.6a,b, ¢, d)
VO1 + GOXU&EO =0,

—ip} = wi.
If U and Vg are known then equations (4.6a,d) determine W and P} respectively but
(4.6b,c) do not determine the former functions. In fact (4.6b,c) only have a consistent

solution if

Gyio— = 1, (4.7)

which determines the mean state which can support the imposed vortex structure. Indeed
(4.7) can then be interpreted as the equation which determines a basic state which makes
the vortex with wavenumber a and all its harmonics neutrally stable. This behaviour is
exactly that postulated by Malkus (1956) who argued that in a turbulent flow the mean
state was that which made all modes present neutrally stable. In other words what Hall
and Lakin found was that, when nonlinear stability theory is pushed way beyond the
weakly nonlinear state, the mean state where vortices exist subtley arranges itself so that

small wavelength vortices are neutrally stable. The solution of (4.7) is then given by

Va(z) + 2y
Gox

ug = , (4.8)
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where a(z) is an unknown function of z.
The y component of the mean state is then determined by the continuity equation to

give

a’\/a+2y+ (a+2y3y’ o(z)
— b(z).
2v/Gox 6v/Goxx

(4.9)

Uy = —

Here b(z) is another unknown function of z. Thus the mean state in I is determined by
insisting that the cquation satisfied by the vortex in the core should have a consistent
solution.

Meanwhile the z-momentum equation yields the following equation when the domi-

nant terms independent of the spanwise variable are retained:

Uo—— + 90— — —5 = 2—{qn0. |V . 4.10
5 T, 577 o {ao, [V5'|°} (4.10)

At this stage 79 and 7y are already known so that (4.10) determines [V01|2. If (4.10) is

integrated with respect to y¥ we obtain

bv/a + 2y N 1 (a+2y)%y' 1

+ )
vV Gox 12 Gox? Va + 2uv/Gox

8110 1
B(z) — ZW'VU |2 = (4.11)

where B(z) is another function of z to be determined along with a(z) and b(z). The
phase of Vol is determined from the spanwise momentum equation but is not needed in
the present discussion. Since [Vi| cannot be negative (4.11) can be used to determine
y1(z),y2(z) the locations where the vortex activity decays to zero. Thus (4.11) is satisfied

at y1, y2 with Vol = Oand if B(z) is then eliminated we obtain an equation of the form
F(a,b,y1,y2, x,Go) = 0. (4.13)

In fact (4.13) above is not sufficient to determine y; and yg since ¢ and b are also unknown.
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An anlysis of the shear layers Ila,b show that the vortex activity which is decaying
algebraically on entering the layers is reduced to zero exponentially as the solution of the

Painlevé equation )
d“y
Tz ¥ =9
y (4.14)

¢N\/—_, Yy — —oo.

The mean flow functions do not acquire any structure in the transition layer scale at leading
order so that %o, %o, and Tp remain constant in IIa,b.

Finally in IITa,b there is no vortex motion so that the mean flow @, o at leading order

satisfies
_du N 8 8%
I— 4+ 07— = —5
15} 2’
T 9y oy (4.15)
ou 0v 0
dr By
which must be solved subject to
i=0v=0, y=0,
(4.16)

-1, y— oo.
However (4.15) is valid only in (0,y1), (y2, 00) so the problem is completed by the conditions

\/a+2yj a’\/a+2yj (a+2yj):‘x’

a= Y2 Gouu,x =1, = n
! 2v/Gox 6/Goxx

—_ b’
Gox

y=y; for j=1,2.
Furthermore the ‘jump’ condition (4.13) must also be satisfied so that the mean flow is
determined as the solution of the boundary layer equations subject to conditions at two
unknown interfaces y; and y2. This numerical problem can be reduced to the solution of
an ordinary differential system in the special case x ~ x5 since @ and o then depend on z

i
7

and the similarly variable yz~ 7. In genecral the partial differential system must be solved
and this was done by mapping (0, z2) into (0,1) and (y2,00) into (1,00) and solving the
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boundary layer equations in (0,00) subject to jump conditions at J = y/y; = 1. The
y-derivatives were approximated using finite differences and the calculations were started
by evaluating the weakly nonlinear form of the solution as z — z,.

Figure 4.5 shows y; and y2 obtained from the above scheme for the case Gg = %,X =
v2z. Also shown in this Figure are the results obtained from the similarity solution.
Figure 4.6 shows y1 and yg for the case x = 2z,Go = 4.176. In that Figure we have
also shown asymptotic solutions for y1 and ys which can be readily obtained in the limits
T — T,,z — o0o. In Figure 4.7 the mean velocity component is shown at z = 1 as a
function of y for x = 2z, Gg = 4.176. These results demonstrate that for large = the region
of vortex activity spreads throughout the boundary layer; more precisely Hall and Lakin
(1988) show that if x ~ =™ with A > % then the free boundary problem for y; and yo
yields

y1~ 22 M g™ 25 0.

Thus the prescnce of large amplitude vortices causes the mean state to be altered almost
everywhere from it’s unperturbed form. Indeed the boundary layer now grows like z™
rather than x5 so that it is thickened by the presence of the vortices. We further note
that if M > % the lower transition layer approaches the lower wall and then the mean
downstream velocity is a simple linear shear flow from y = 0 to y;. We note that at
some stage the layer IIa becomes of comparable depth to IIla when z — oo so that
a modified Painlevé problem must be solved there, Blennerhassett and Bassom, private

communication.
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Thus, perhaps uniquely in hydrodynamic stability theory, we see that small wavelength
Gortler vortices can be described asymptotically all the way from the lincar regime to a
nonlinear state where the mean flow is driven almost everywhere by the vortices. For some
flows the Gortler vortex mechanism is operational only for a finite range of values of z; for
a Blasius boundary layer this is the case if the wall curvature does not increase as quickly
as z+. In that situation the frece boundary problem specified above will terminate at some
r = zp where y1 and y2 coalesce. Beyond z = zp there is no vortex activity and the flow
is obtained by solving the boundary layer equations throughout (0,00). However, even
though the vortex activity has ceased, the mean state will not be the same as that which
is set up in the absence of upstream vortices.

The main result then of the Hall-Lakin analysis is that where large amplitude vortices
exist they drive the mean state which must satisfy (4.7). In fact (4.7) also applies to curved

channel flows. A modified form of (4.7) , namely

dip digy2
Goxto—— — 20y

1, 4.17
& . (4.17)

was shown by Bassom and Hall (1988) to determine the mean state in curved channel
flows driven by the interaction of vortices and Tollmien-Schlichting waves. Interestingly,
it was found that in curved channel flows there can be no large amplitude vortex state
in the absence of curvature since (4.17) with Go = 0 has no acceptable solutions. This
result suggests that Gortler and Witting’s(1958) suggestion that Gortler vortices occur as

secondary instabilities of Tollmien-Schlichting waves is not correct. Finally, before going
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on to discuss the breakdown of the nonlinear state of Hall and Lakin (1988) we point out

that a further generalization of (4.7), namely

where Rg is a scaled Rayleigh number and T a mean temperature is appropriate to Bénard
convection problems where the instability is initially localized in the vertical direction.

Now let us turn to the instability of the vortex states found by Hall and Lakin (1988).
Experimentally it has been known since the work of Bippes (1972) that finite amplitude
vortices can be unstable to a wavy vortex disturbance propagating in the streamwise
direction. Hall and Seddougui (1989) have recently investigated this possibility and show
that if this type of secondary instability is present in the strongly nonlinear regime of Hall
and Lakin then it must be concentrated in either of the shear layers Ia,b.

The disturbance imposed on the flow in regions Ilab by Hall and Seddougui is 7/2

radians out of phase with the primary vortex and is proportional to
z
exp iaz{/ K(z)dz — Qta?}.

Here Q is the fixed (real) frequency of the wavy mode whilst K (z) is a complex wavenumber
which will evolve in z as it develops in the streamwise direction. In fact K(z) is found to

expand as

K = Ko(z)+ a” §K1(3:) + -

and Ko turns out to be purely real and such that the wave propagates downstream with
the mean velocity field in ITa or ITb. The next term K1(z) is complex in general but at
particular locations and frequencies is real. Hall and Seddougui indentified a number of
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such neutral states and showed that in general the upper shear layer will break down first;
note that since the wavy mode is trapped in Ila or IIb there is no reason why the latter
layers should simultaneously become unstable to the wavy mode. The results of Hall and
Seddougui were entirely consistent with the experimental observations of Peerhossaini and
Wesfreid (1988) who identified low and high frequency secondary instability breakdowns of
the flow below and above the region of vortex activity. The type of flow pattern predicted
by the Hall-Seddougui calculation after the secondary instabilty is shown in Figure 4. 8.
An alternative description of nonlinear Gortler vortices has recently been given by
Sabry and Liu (1987). The latter authors made a parallel flow approximation and modelled
the spatial growth of a boundary layer by letting it evolve in time. This procedure is often
used in Computational Fluid Dynamics when the instability of a spatially varying flow
i1s simulated numerically. The basic state used in such calculations is a solution of the
Navier-Stokes equations only if some ficticious body force is applied. Some justification
for this approach is often made by appealing to Gaster’s (1962) discussion of spatial and
temporal growth rates and their relationship. In situations where transition is dominated
by Tollmien-Schlichting waves it appears that numerical situations carried out using this
approach are remarkably successful in reproducing experimental results, so that, even
though no formal justification for the technique can be given, this type of parallel flow
temporal simulation captures the essential physics of transitional flat plate boundary layer.
However for Tollmien-Schlichting waves it is known that instability occurs at relatively high

Reynolds numbers; in this case the parallel flow approximation can be formally justified

39



and therefore it is not unreasonable to assume that the essential physics of the problem is
obtained within the framework of this approximation.

As we have seen in Section 3 and this section, a crucial property of Gortler vortices is
that at 0(1) wavenumbers their evolution is completely controlled by nonparallel effects.
This suggests that temporal parallel flow simulations of nonlinear Gortler vortices might
well be of little relevance to the real problem.

Sabry and Liu compared the results of their calculations to the experiments of Swearin-
gen and Blackwelder (1987). As an initial disturbance they introduced a parallel flow
cigenfunction of amplitude appropriaate to the experiments. The parallel flow equations
were then marched forward in time and related to the spatial case by a convenient choice of
the convection velocity. This velocity was choosen in order to optimize the agreement with
theory and experiment. Note that in this type of simulation the boundary layer thickness
is a function of time so the instantaneous effective wavenumber also varies in time. The
Sabry-Liu calculations were begun at a position where the experimentally observed vor-
tices were certainly nonlinear. Figures 4.9 and 4.10 compare the displacement thickness
and wall shear at the peak-valley locations as predicted by Sabry and Liu and measured by
Swearingen and Blackwelder. Figure 4.9 also shows the wall shear for Blasius flow whilst
the Blasius wall shear and the shear for a turbulent boundary layer are shown in Figure
4.10. The agreement betwecn the calculations and the experiments is exceptionally good
;a few words of caution though are perhaps appropriate.

Firstly, it should be pointed out that the Sabry-Liu calculation does not allow for

any streamwise dependence of the disturbance , thus necessarily they cannot capture the
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secondary instability of the initial vortex state. Almost certainly the turning points in
the experimental data occur when the initial vortex state has broken down; it is therefore
surprising that this effect is captured by Sabry and Liu. Secondly it is not clear from
the Sabry-Liu calculation how the agreement between theory and experiment depends on
the two parameters at their disposal ,ie the convection velocity and the initial shape and
location of the disturbance.

Also shown in Figures 4.9 , 4.10 are the results obtained using the code of Hall (1988) to
simulate the experiments. The calculations were started at a position where the measured
vortex was small, we see that the spatial calculations correctly predict the right trends
in shear and displaccment thickness up to the point where the corresponding quantities
measured experimentally develop turning points. We believe that this is to be expected
since at that stage the vortices have become unstable to time-depoendent perturbations;
interestingly the velocity profiles just before this happens are highly inflectional and so
inviscid instabilities would possibly cause a secondary instabilty to occur. We note that
the spatial calculation suggests that the wall shear at the peak locations is about to change
sign when the calculations were stopped; this was done because at this stage our results
began to develop a grid-size dependence which was presumably caused by the local sign
change of the downstream velocity component. We further note that the spatial code
started from different initial staions gave quantitatively similar results to those reported
above. Thus our spatial calculations suggest that The Sabry-Liu calculations should be
treated with some caution. A much more detailed comparison between tecmporal and

spatial nonlincar simulations of Goértler vortices has been made by Malik(1989), private
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communication. Malik used the spatial code of Hall (1988) and a temporal code derived
from Malik, Zang, and Hussaini(1985). Malik was unable to reproduce the results of
Sabry and Liu from his temporal simulations; indeed Malik’s temporal simulations were
qualitatively similar to those from the spatial approach.
5 Conclusions

We have seen that the linear evolution of Gortler vortices in growing boundary layers is
dominated by nonparallel effects except in the small wavelength limit. In the latter regime
a simple asymptotic description of the vortices is available whilst at bigger wavelengths the
linear partial differential equations governing the linear growth of vortices must be solved
numerically. The early work in this field ignored the nonparallel effects possibly because
quasi-parallel stability theory had been so successful in explaining the growth of Tollmien-
Schlichting waves in boundary layers. The reason why parallel flow theory captures the
esssential details of Tollmien-Schlichting wave growth is that this instability occurs at rel-
atively large Reynolds numbers at a wavelength small compared to a typical distance over
which the boundary layer itself evolves. Thus the early parallel flow stability calculations
of Tollmien-Schlichting waves appear as the first approximation of the procedures devised
by Bouthier(1973) and Gaster(1974). Similarly, in the more formal asymptotic description
of Tollmien-Schlichting waves by Smith(1979), nonparallel effects do not appear at leading
order. For the vortex instability mode of a boundary layer it is only at high wavenumbers
that the spatial evolution of the instability occurs on a shorter lengthscale than that over

which the mean flow develops.
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Another significant difference between the Gortler and Tollmien-Schlichting modes is
that they are respectively governed by elliptic and parabolic differntial equations. This
means that the position of neutral stability of a vortex depends on its upstream behaviour.
This latter property was the main result found by Hall(1983); later researchers attempted
to avoid the troublesome non-uniqueness implied by that property by arguing that the
parallel flow cigensolutions should be used as ’the initial conditions’ for the disturbance
equations. In this paper we have shown that if, the instability arises from a longtitudinal
vortex structure impinging on the leading edge of the curved wall, then a most dangerous
mode can be isolated and it’s neutral curve calculated. The curve we have found is certainly
much more in line with experimental observations than those found previously. However,
in some experiments the vortices could be tripped by disturbances introduced at the wall,
and in that case we would expect a different neutral curve to exist. Thus, as a summary
of our receptivity results, we can say that if a Gortler experiment is performed in a faciilty
which allows the instability to be triggered by free stream disturbances which include all
possible spanwise wavelengths, then the experimental results should correlate with the
lowest neutral curve from the receptivity calculations. It should be noted that the neutral
curves found in the receptivity calculations depend on the rate of change of the Gortler
number so that the neutral curve of the most dangerous mode needs to be calculated for
any particular curvature distribution. Also it needs to be pointed out that the receptivity
calculation we have carried out can be extended to any two-dimensional boundary layer

but the initial form of the instability is a function of the boundary layer.
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All the results discussed in this paper arc for two-dimensional boundary layers. The
only work on Gortler instabilities in three-dimensional boundary layers known to the au-
thors is that due to Hall(1985). That paper investigated the instabilty of weakly three-
dimensional boundary layers on infinite swept walls where the spanwise velocity compo-
nent was comparable to the normal velocity component in the boundary layer. It was
found that, as the spanwise velocity component is increased, small wavelength vortices are
stabilized and become time-dependent. The results suggest that, in a three-dimensional
boundary layer, the Gortler mechanism might not even be operational. However a word of
caution is in order because the order one wavenumber problem is yet to be tackled. In fact
there is some limited experimental evidence, Baskaran and Bradshaw(1988), for turbulent
three-dimensional boundary layers which suggests that a crossflow can destroy the Gortler
mechanism.

Finally, in our discussion of results for linear theory, we point out that some work
has been done on boundary layer flows other than the Blasius one. Thus for example
the wall-jet has been studied by number of authors. This boundary layer is of practical
interest and can be unstable on both concave and convex walls, Drazin and Reid(1979)
and Floryan (1986).

The reader is refered to the latter paper for a discussion of parallel flow theory applied
to the wall-jet problem and to Wadey(1990) for the nonparallel and nonlinear situations.
Here we merely report that nonparallel efffects again dominate the linear growth of the
vortices for wall jets and that in the nonlinear regime the approach of Hall and Lakin(1988)

can be used.
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It is in the nonlincar regime where the Gortler mechanism develops a remarable struc-
ture. In particular small wavelength vortices can be described in a strongly nonlinear state
where they actually drive the mean flow. The breakdown of these vortices caused by a
wavy vortex secondary instability can also be decribed asymptotically and the results ob-
tained agrece well with experimental observations. At order one vortex wavelengths the
nonlinear nonparallel evolution of the vortices can only be described numerically. In this
paper we have described a comparison of the results obtained using the spatial nonlinear
approach of Hall(1988) and a temporal parallel flow simulation of Sabry and Liu(1988).
The differences between the results which we have found suggest that temporal simulations
do not qualitatively reproduce important features of the nonlinear stages of vortex growth.

Finally we close by making a few remarks about some recent work on vortex-wave
interactions in boundary layer flows and channel flows. The point which we wish to make
is that in parallel flows the interaction of oblique Tollmien-Schlichting waves can cause
the generation of longtitudinal vortex structures which have scales appropriate to Gortler
vortices. The work of Hall and Smith (1988) shows that the lincar vortex equations (1.4)
have sufficient structure to describe oblique Tollmien-Schlichting waves so that an inter-
action between these waves and longtitudinal vortex structures can be explained within
the framework of the Gortler vortex equations. The interaction equations found by Hall
and Smith have singular solutions of large amplitudes and thesec solutions can exist in the
absence of wall curavature. Thus there can be a sclf-sustained interaction between longti-
tudinal vortices and oblique waves. These results were developed further by Hall and

Smith (1989a,b) who show that, in a flat plate boundary layer, small amplitude oblique
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Tollmien-Schlichting waves occur as secondary bifurcations from two-dimensional waves.
Subsequently these oblique waves drive a large amplitude vortex field of the type which is
known to occur in some forms of boundary layer transition.

The author would like to acknowledge the generosity of Dr. S. Mangalam who supplied
Figure 1.1 and some helpful discussions with Dr. S. Cowley concerning the receptivity
problem i.'or vortex flows. In addition the author wishes to thank SERC, NASA Langley,
and the US Air Force without whose support much of the work discussed here would not

have been possible.
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FIGURE 1.1 Gértler vortices in the concave section of a Laminar FFlow

Wing.
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FIGURE 1.2 The flow pattern associated with Gortler vortices.
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